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Abstract— Waveform synthesis techniques based on 
maximization of signal-to-interference-noise ratio (SINR) or 
mutual information (MI) requires generation of transmit signal 
with a prescribed Fourier magnitude spectrum which is dependent 
on the varying target and clutter environment conditions. For all 
practical radar purposes the Power Amplifier is operated at 
saturation, thus a constant envelope waveform is required to be 
transmitted. In this paper we consider the problem of generating a 
signal with constant envelope in time domain from its SINR/SNR 
maximizing Fourier magnitude spectrum. Alternating projection 
methods on non-convex sets suffer from poor convergence, local 
maxima and sensitivity to initial seed. We propose here the 
application of Zadoff-Chu sequence as the starting point to the 
iterative alternating projection method. Simulation results that 
demonstrate the efficiency of this algorithm are presented. 

Keywords— Waveform Synthesis, Constant Modulus 
Constraint, Matched Illumination, Extended Radar Targets, 
Alternating Projection Methods.  

I.  INTRODUCTION  
With the advent of adaptive transmit waveform design in 

radar and sonar, the problem of reconstructing constant 
envelope signals with prescribed Fourier transform has become 
of prime importance. A radar system is considered adaptive if 
one or more of its transmit and/or receive parameters are 
altered based on its operating environment [3]. The adaptation 
of transmit waveform has derived considerable interest in 
recent times owing to the considerable performance benefit that 
it can provide. For maximum efficiency the power amplifiers 
of the radar is usually operated at saturation, thus demanding a 
constant envelope time signal. Hence the reconstruction of 
constant envelope signal from adaptive radar transmit 
optimized waveform becomes a mandate. The design of radar 
optimized waveforms are usually based on criteria of 
maximization of signal-to-interference noise ratio (SINR) or 
signal-to-noise ratio (SNR) for target detection n[5][10][8], and 
maximization of mutual information or Mahalanobis distance 
for target classification[6][8][11]. 

Formulating the problem mathematically, we have 

ܷሺ݂ሻ݁ఏሺሻ ൌ  ሻ݁థሺ௧ሻሽݐሺݑሼܨ

               (1) 

where ܨሼ. ሽ denotes Fourier transform operation. 

The function ݑሺݐሻ݁థሺ௧ሻ describes the complex modulation 
of the signal, where ݑሺݐሻ specifies the time-envelope of the 
waveform, which as per radar system constraint is required to 
be constant, say	ܣ. The Fourier transform of ݑሺݐሻ݁థሺ௧ሻ is 
denoted as ܷሺ݂ሻ݁ఏሺሻ. Most of the adaptive transmit 
waveform solutions specify the modulus of the Fourier spectra, 
ܷሺ݂ሻ. The problem of finding ߠሺ݂ሻ and/or ߶ሺݐሻ, which meets 
both the desired time envelope constraint, ݑሺݐሻ and the 
desired Fourier modulus spectra, ܷሺ݂ሻ is called phase 
retrieval. The question that arises here is - if it is possible to 
specify time envelope ݑሺݐሻ and Fourier spectra ܷሺ݂ሻ 
independently, since the Fourier transform operation does seem 
to pose some constraint on the modulus of its Fourier pairs. 
However as has been found in literature, as the time-bandwidth 
product of the signal becomes large the bearing of modulus of 
its Fourier pairs, ݑሺݐሻ and ܷሺ݂ሻ, on each other, starts to lose 
force. 

There are several iterative solutions proposed in literature, 
one of the earliest being Gerchberg-Saxton algorithm (GSA), 
which has been shown to be a special case of Error Reduction 
Algorithm (ERA) [7]. Based on ERA framework there are 
other general algorithms based on steepest-descent/conjugate-
gradient that have been proposed in literature. Also, basic 
input-output (BIO) algorithm and Hybrid input-output (HIO) 
algorithms have been studied [7]. 

The alternating projection iterative algorithms usually 
suffer from slow convergence, convergence stagnation, 
permutation and scaling ambiguities, and sensitivity to initial 
seed. We here propose to use Zadoff-Chu sequence as the 
starting point for these alternating projection algorithms. Other 
fixed starting points such as Huffman's code [2] has been 
proposed in literature. 

Notation: We denote time domain signal and frequency 
domain spectra with lower and upper-case respectively. The 
vectors and matrices are represented by an under-bar and 
boldface respectively. The superscripts ሺ. ሻכ, ሺ. ሻ், and ሺ. ሻு 
represent complex conjugation, transposition and complex 
transposition respectively. The subscript ݉ and ݁ are used to 
denote Fourier Transform Magnitude (FTM) constraint and 
time envelope constraints respectively. 

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 1 10-14 December 2013



II. PROBLEM FORMULATION 
From the Transmit-Receive radar model in Figure 1, the 
received signal at the receiver can be expressed as 

ሻݐሺݕ ൌ ݄ሺݐሻ כ ሻݐሺݔ  ܿሺݐሻ כ ሻݐሺݔ  ݊ሺݐሻ 
         (2) 

    where כ represents convolution, ݄ሺݐሻ is the target impulse 
response which we consider to be extended in time. Extended 
target impulse response can arise if the target has an extended 
range or in case of a high resolution radar. Several models of 
extended target can be found in [9][5][10]. The target impulse 
response taps of length ܰ can be assumed to be deterministic 
or stochastic. The clutter response ܿሺݐሻ is from a dense 
background and is spread through-out in time, and manifests 
at the receiver as self-interference term,	ݔሺݐሻ כ ܿሺݐሻ. ݊ሺݐሻ 
represents the receiver thermal noise, and ݎሺݐሻ the receiver 
filter response. 

Figure 1 Radar Tx-Rx Model 

A. SINR-Matched Illumination 
The SINR optimized transmitted signal ሼ ௌܺூேோሺ݂ሻሽ can be 

computed by solving 

ௌܺூேோሺ݂ሻ ൌ max
ሺሻ

න
ሺ݂ሻܺሺ݂ሻ|ଶܪ|

ܵሺ݂ሻ|ܺሺ݂ሻ|ଶ  ܵሺ݂ሻ
݂݀	

∈ஐ
 

               (3) 

The solution is 

| ௌܺூேோሺ݂ሻ|ଶ ൌ
ඥ|ܪሺ݂ሻ|ଶܵሺ݂ሻ

ܵሺ݂ሻ
ߤ െ ඨ

ܵሺ݂ሻ
ሺ݂ሻ|ଶܪ|

ା

 

               (4) 

where ߤ is the Lagrangian multiplier constant determined from 
the energy constraint  |ܺሺ݂ሻ|ଶ݂݀ ൌ ஐܧ , and ሾݔሿା ൌ
max	ሺ0,  .ሻ, ሾ6ሿݔ

A similar | ௌܺூேோሺ݂ሻ|ଶ maximizes the input SINR at the 
receiver for the extended stochastic targets as well [6]. Note 

that the self-interference clutter term ඥ|ுሺሻ|
మௌሺሻ

ௌሺሻ
 modulates 

the conventional water-filling solution, ߤ െ ටௌሺሻ
|ுሺሻ|మ

൨
ା

. 

 The energy of the transmitted signal, ܧ is a monotonic 
function of the Lagrangian multiplier constant, ߤ. The proof of 
which is given in Appendix VI. 

 

 

B. SNR-Matched Illumination 
Following equation (3), the signal-to-noise ratio (SNR) 
maximization problem, in the absence of clutter, becomes 
 

ௌܺேோሺ݂ሻ ൌ ݔܽ݉
ሺሻ

න
ሺ݂ሻ|ଶܪ|

ܵሺ݂ሻ
|ܺሺ݂ሻ|ଶ݂݀

ఆ
 

         (5) 
       The solution is given by the eigenfunction of the 
Freedholm equation of the first kind [8] 

ሻݐௌேோሺݔ௫ߣ ൌ නܮሺݐ െ ߬ሻݔௌேோሺ߬ሻ݀߬
்

 

         (6) 
where the kernel	ܮሺݐሻ ൌ |ଵሼ|ுሺሻିܨ

మ

ௌሺሻ
ሽ.  

Now note from equation (5), that only Fourier Transform 
Magnitude (FTM), | ௌܺேோሺ݂ሻ| is relevant for maximizing SNR. 
 

C. Constant Modulus Waveform 
From the adaptive Matched Illumination waveforms (SINR-
MI and SNR-MI), the Fourier transform magnitude over a 
frequency domain is specified. For practicality of the matched 
illumination waveforms from	|ܺሺ݂ሻ|ଶ, the generation of a 
constant envelope signal is important. From hereon, we denote 
the desired Matched Illumination FTMs, i.e. | ௌܺூேோሺ݂ሻ| & 
| ௌܺேோሺ݂ሻ| as	ܷሺ݂ሻ. Thus, mathematically the problem is 
 

ሻݐሺݔ ൌ ൜ܣ						݂݅	ݐ ∈ .	݂݅									0ܶ  		.ݓ

         (7) 
suchthat. |ܨሼݔሺݐሻሽ െ ܷሺ݂ሻ|ଶ is minimum over ݂	 ∈ Ω. 
 
 

III. ALTERNATING PROJECTION METHODS 

A. Definitions 
Developing from the previous section and applying it to our 

problem here, we define the two sets, ܦ and ܱ as follows 

ܦ ൌ ሼ|ܺሺ݂ሻ| ൌ ܷሺ݂ሻ:		݂ ∈ Ωሽ                    (8) 

i.e. ܦ is the set of all waveforms that satisfy the prescribed 
Fourier Transform Magnitude (FTM) constraint, ܷሺ݂ሻ. So 
essentially the set ܦሺ݂ሻ consists of waveforms of the form 
|ܺሺ݂ሻ|݁ఏሺሻ, where ߠሺ݂ሻ ∈ ܴ	∀	݂ ∈ Ω. 

ܱ ൌ ሼ|ݔሺݐሻ| ൌ ݐ			:ሻݐሺݑ ∈ ܶሽ                     (9) 

 i.e. ܱ is the set of all waveforms that satisfy the desired time 
envelope constraint, ݑሺݐሻ, which in our case is a constant ܣ. 
So essentially the set ܱ consists of waveforms of the form 
ሻݐሻ|݁థሺ௧ሻ, where ߶ሺݐሺݔ| ∈ 	ݐ	∀	ܴ ∈ ܶ.  

It is worth noting here that the sets ܦ and ܱ are closed 
but not convex, i.e. an iterative projection onto the two sets 
isn't guaranteed to result in a singleton solution in ሼܦ ∩
ܱሽሾ2ሿ.  
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Defining two projection operators onto the set ܦ and ܱ 
as, 

Π൫ܺሺ݂ሻ݁ఏሺሻ൯ ൌ ܷሺ݂ሻ݁ఏሺሻ. 1ஐ 

             (10) 

ΠA൫ݔሺݐሻ݁థሺ௧ሻ൯ ൌ .థሺ௧ሻ݁ܣ 1் 

             (11) 
where 1ஐ and 1் are indicator function defined as below 

1ஐሺ݂ሻ ൌ ൜1					݂݅	݂	 ∈ Ω0								݂݅	.  (12)          .ݓ

              

1்ሺݐሻ ൌ ൜1					݂݅	ݐ	 ∈ .	݂݅								0ܶ  (13)           .ݓ

B. Error Reduction Algorithm Algorithms Applied to Our 
Problem 

The Error Reduction Algorithm (ERA) or Gerchberg-Saxton's 
algorithm (GSA) [7] requires satisfying the function time-
constraint and  FTM constraints iteratively by applying 
minimal changes until convergence. The steps of the algorithm 
can be outlined as below  

1. ܺሺ݂ሻ ൌ |ܺሺ݂ሻ|݁ఏሺሻ ൌ  ሻሽݐሺݔሼܨ
                                                                              ሺ14ሻ 

2. ෨ܺሺ݂ሻ ൌ ቊܷ
ሺ݂ሻ݁ఏೖሺሻ										݂݅		݂ ∈ Ω

|ܺሺ݂ሻ|݁ఏೖሺሻ										݂݅	. .ݓ
 

                                                                              ሺ15ሻ 
ሻݐሺݔ .3 ൌ ሻ|݁థೖሺ௧ሻݐሺݔ| ൌ ଵሼିܨ ෨ܺሺ݂ሻሽ 

                                                                              ሺ16ሻ 

ሻݐሺݔ .4 ൌ ቊ ݐ	݂݅				థೖሺ௧ሻ݁ܣ ∈ ܶ
.					ሻ|݁థೖሺ௧ሻݐሺݔ| .ݓ

 

           ሺ17ሻ 
ሻݐାଵሺݔ .5 ൌ  		ሻݐሺݔ

                                                                              ሺ18ሻ 
        The steps 1 െ 5 are iterated until the pre-defined 
convergence criteria is met. The steps 2 and 4 can be 
expressed in terms of projection operators as follows 
 

෨ܺሺ݂ሻ ൌ Πሺܺሺ݂ሻሻ 
       (19) 

ሻݐሺݔ ൌ Πሺݔሺݐሻሻ 
       (20) 

 respectively. And the Normalized Mean-Squared Error 
(NMSE) at ݇௧ iteration in step 2 and 4 are defined as 

ܤ ൌ න ሾܷሺ݂ሻ െ |ܺሺ݂ሻ|ሿଶ
1
Ω 	݂݀		∈ஐ

 

       (21) 

ܧ ൌ න ሾܣ െ ሻ|ሿଶݐሺݔ|
1
ܶ ்∋௧ݐ݀

 

       (22) 
 
 
 
 
 
 
 
 

Remarks: The alternating projection algorithms usually suffer 
from the following limitations 1) slow convergence, 2) stuck 
in local maxima/minima, 3) solution stagnation, 4) high 
computational cost (multiple FFT/IFFT operations), 5) search 
for step size parameter (Conjugate Gradient, BIO and HIO) 
and 6) sensitivity to initial seed. The Hybrid Input-Output 
algorithm though promises to avoid the solution stagnation 
problem that is usually observed in the other algorithms. 

The convergence of these iterative algorithms is sensitive to 
the intial seed; hence an appropriate choice of initial seed is 
required to ensure faster convergence and reduced mean 
squared error.  

IV. PROPOSED SOLUTION & RESULTS 
     Alternatively to [2] where Huffman’s signal is proposed to 
be used as the initial seed, we here propose to use an alternate 
seed using the Zadoff-Chu sequence[12] as the initial seed to 
the above alternating projections algorithms. The Zadoff-Chu 
sequence was verified to have similar performance as reported 
in [2] with Huffman code.  Both Huffman and Zadoff-Chu 
sequence have faster convergence and lower computation cost 
(due to reduced iterations to converge), compared to random 
initial seed. 

We present the performance of the proposed solution 
numerically. Although the proposed initial solution can be used 
for any alternating projection algorithms of [7] we limit 
ourselves only to Error Reduction Algorithm. We compare the 
proposed method of starting with Zadoff Chu sequence with 
random seed. We use the Normalized Mean Squared Error, ܤ 
of (21) as our metric of comparison, since the time envelope 
poses a stricter constraint in practical radar. We run both the 
methods for fixed number of iterations. 

 The FTM of the following response are used as prescribed 
FTM,ܷሺ݂ሻ, for evaluating the performance of our proposed 
solution. 

ሻݐଵሺݍ ൌ ݁ି.ଷ௧cos	ሺ0.2ݐߨሻ           (23) 

ሻݐଶሺݍ ൌ 	3݁ି.ଷ௧ cosሺ0.4ݐߨሻ  10݁ି.ଷଶ௧sin	ሺ0.4ݐߨሻ 
              (24) 

Figure 2 (top) Transmitted Time Envelope, (mid) Retrieved 
Phase from Random Initial Seed, (bottom) Retrieved Phase from 

Zadoff Chu sequence Initial Seed 
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Figure 3 (top) Desired Fourier Transform Magnitude, (mid) 
Fourier Transform Magnitude from Random Initial Seed, 

(bottom) Fourier Transform Magnitude from Zadoff Chu GSA  

Figure 4 Comparison of convergence of Normalized Mean 
Square Error with iterations 

Figure 2 (top) shows the desired/converged time envelope of 
the transmit signal, Figure 2 (mid) and Figure 2 (bottom) plots 
the retrieved temporal phase from the Random Initial Seed and 
on using Zadoff Chu sequence respectively for ܷሺ݂ሻ ൌ
1ሽ|. Figure 3 (top) plots the prescribed FTM, i.e. ܷሺ݂ሻݍሼܨ| ൌ
 1ሽ|, Figure 3 (mid) and Figure 3 (bottom) compares theݍሼܨ|
corresponding FTM of converged constant-modulus signal 
from Random Initial Seed and on using Zadoff Chu ssequence 
as Initial Seed respectively after pre-specified number of 
iterations. The NMSE of the final solution, i.e. ܤହ	for the 
Random Initial Seed and Zadoff Chu sequence are 0.12922 and 
0.067114 respectively. Figure 4 compares the convergence 
rate, i.e. NMSE ܤ (in dB) vs iterations, between the Random 
Initial Seed and Zadoff Chu sequence as Initial Seed for 
ܷሺ݂ሻ ൌ   .|1ሽݍሼܨ|

       Figure 5, Figure 6 and Figure 7 compares the temporal 
response, Fourier Transform Magnitude, and convergence 
properties for the Random Initial Seed and Zadoff Chu 
sequence for	ࢁሺࢌሻ ൌ  ሽ|. The NMSE of the convergedሼࡲ|
solutions are 0.27834 and 0.26783 respectively.  

      It is also worth noting here that use of Zadoff Chu 
sequence or Huffman signal as initial seed loosely guarantees 
the final solution with good auto-correlation properties, but 
from target detection point of view more important is the 

 

 

 cross-correlation of the target-distorted transmitted signal 
with the optimal filter response, which actually represents the 
receiver output of the SINR/SNR-Matched illumination 
solution. We present the cross-correlation properties of our 
constant modulus SINR/SNR-Matched Illumination solution 
elsewhere [13]. 

Figure 5 (top) Transmitted Time Envelope, (mid) Retrieved 
Phase from Random Intial Seed, (bottom) Retrieved Phase from 

Zadoff Chu GSA 

Figure 6 (top) Desired Fourier Transform Magnitude, (mid) 
Fourier Transform Magnitude from Random Initial Seed, 

(bottom) Fourier Transform Magnitude from Zadoff-Chu GSA. 

Figure 7 Comparison of convergence of Normalized Mean 
Square Error with iterations 
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V. CONCLUSION 
In this paper, we have proposed to Zadoff Chu sequence as the 
starting point for alternating projection algorithms for phase 
retrieval problem in adaptive radar system. We numerically 
demonstrate improved performance in terms of speedier 
convergence and lower normalized mean squared error of 
using Zadoff Chu sequence compared to random initial seed 
alternating projection methods.  

VI. APPENDIX 

A. Monotonicity of ܧ w.r.t. ߤ 
Theorem: The Energy of the transmitted signal ܧ is a 
monotonic function of the Lagrangian multiplier parameter	ߤ. 
 
Proof: From the energy constraint ܧ on the transmitted radar 
signal, and expressing the same in terms of the water-
illuminated waveform solution, we have 

ܧ ൌ න| ௌܺூேோሺ݂ሻ|ଶ݂݀
ஐ

 

ൌ න
ඥ|ܪሺ݂ሻ|ଶܵሺ݂ሻ

ܵሺ݂ሻஐ
ሾߤ െ

ඥܵሺ݂ሻ
|ሺ݂ሻܪ| ሿ

ା݂݀ 

       (25) 
Observe that 

0  ܦ 
ඥܵሺ݂ሻ
|ሺ݂ሻܪ|   ݂	∀															௫ܦ

       (26) 
where ܦ ൌ min∈ஐ ௫ܦ and			ሺ݂ሻܦ ൌ max∈ஐ   The		ሺ݂ሻܦ
region of support or limit of integration is defined by the set 

൝݂ 
ඥܵሺ݂ሻ
|ሺ݂ሻܪ| 		൏  ൡߤ

       (27) 
and the entire bandwidth is defined as 

൝݂ 
ඥܵሺ݂ሻ
|ሺ݂ሻܪ|  ൡߤ  ൝݂ 

ඥܵሺ݂ሻ
|ሺ݂ሻܪ| 	  ൡߤ

       (28) 
It is worth noting here that, 

ߤ ൌ ܦ ൌ ܧ		 ൌ 0 
       (29) 

and for  ߤ ൌ  ௫ܦ

ൌ ܧ ൌ  |ுሺሻ|ඥௌሺሻ
ௌሺሻ

൬ܦ௫ െ
ඥௌሺሻ
|ுሺሻ|

൰ ݂݀	  0ஐ  
       (30) 

which means ܧሺܦ௫ሻ   ሻ. To prove theܦሺܧ
monotonicity of ܧ in ߤ, we observe that the integrand in the 
energy constraint equation is positive and is a function of ߤ 
and ݂. Now, we can argue that at each ݂, the integrand is a 
linearly increasing function of ߤ, and also the range of support 

ሼ݂ 
ඥܵሺ݂ሻ
|ሺ݂ሻܪ| 	  ሽߤ

increases with ߤ. Now since the integrand is positive for 
each	݂, integration (or summation) is going to increase the 
value of the integral. Hence, we conclude that ܧ is a 
monotonically increasing function of	ߤ.             ■  
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