
Parallel processing for SAR image generation in
CUDA – GPGPU platform

Prajakta Tapkir, Saurabh Thakur, and C. Bhattacharya
Electronics Engineering Dept, DIAT, Pune - 411025, India

tapkir.prajakta@gmail.com

Abstract:

 High resolution imagery from synthetic aperture
radar (SAR) video data requires numerical computations of
the order of gigaflops (GFLOP). The computational burden
increases with the image size and the amount of input raw
video signals. General purpose graphic processor units
(GPGPU) can play a pivotal role in parallel processing the
raw video data to generate SAR imagery in a much faster
process. In this paper, we show utilization of GPGPU
processors in compute unified device architecture (CUDA®)
environment for implementation of a parallel algorithm for
SAR image generation.

Keywords: SAR, GPGPU, CUDA, Parallel Processing.

I INTRODUCTION

 Satellite-borne synthetic aperture radar (SAR)
video raw data requires large number of computational
procedures to generate an image. For example, an earth
observation satellite RADARSAT-1 in fine beam mode
of operation with a C-band SAR sensor as payload is
3.6Km in azimuth and 50Km in range [1]. The scale of
numerical computations is of the order of gigaflops
(GFLOPs) that may be appreciated from the fact that
ground footprint of radar backscattering results in an
image with 5.26m spatial fine resolution in azimuth and
7.2m ground range resolution.
 In order to improve efficiency in SAR video
data processing, one way is to distribute the computation
load among several processing elements (PEs). There are
several bottlenecks to such distributed processing such
as dependencies on the configuration of PEs, their
interconnectedness, message passing protocols, and data
transmission bandwidth among PEs [2]. Although this
enhances the speed of computation they do not include
any parallel signal processing algorithms for SAR image
formation.
 However, in cases where the structure or flow of
the algorithm does not map directly onto the
architecture, we need to develop new methods to extract
parallelism, and correspondingly improve performance.
General purpose graphic processor unit (GPGPU) is
architecture for high performance computing that uses
graphics processing units (GPU) for multicore
processing of data. GPGPU exhibit two properties such
as data parallelism and intensive throughput of data.
Data parallelism implies processor can execute

operations on different data elements simultaneously. On
the other hand, throughput intensive process means an
algorithm is going to process lots of data elements whose
execution will be in parallel. GPGPU platforms available
from NVIDIA, ATI, and Intel have a large number of
processors (of the order of a few hundred) structured to
allow multiple threads of execution. Architecture of
GPGPU is organized into an array of highly threaded
streaming multiprocessors (SMs). It has number of
streaming processors (SPs) that share control logic and
instruction cache [3]. Comparative survey of latest
GPGPUs, e.g., Fermi and Kepler series from NVIDIA
shows that as the number of cores per SMs increases,
core speed also gets increased. The number of cores in
Tesla C2075 is 448 whereas Tesla K20C Kepler series
has 2496 cores. Therefore the memory bandwidth also
increases in advanced generation of GPGPUs.
 In this work, we utilize compute unified device
architecture (CUDA) as the programming platform.
CUDA includes such a programming model along with
hardware support that facilitates parallel implementation.
It allows developers to harness the underlying massively
parallel compute engine with C-programming language.
An algorithm is broken into CUDA threads those are
scheduled for concurrent execution. We describe a
parallel algorithm of SAR image processing that
inherently exploits parallelism in execution. Through
this work we have developed two levels of parallelism,
one is devising a parallel algorithm for SAR signal
processing, and another is an actual implementation and
execution in GPGPU.
 In the following sections we describe working
of the parallel algorithm that treats SAR data vectors in
segmented blocks and does processing over the blocks
simultaneously. We show overall computational speed
improvement when this segmented or block processing
algorithm is executed with CUDA programming in
GPGPU. Finally, we show actual SAR image generation
from RADARSAT-1 raw video data and demonstrate
improved performance in computational speed.

II ALGORITHM FOR PARALLEL PROCESSING

OF SAR IMAGE GENERATION

 SAR signal processing works on the principle
of matching received signal phase with transmitted
signal phase. This can be done by fast Fourier transform
(FFT) based techniques. Traditional brute force

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 1 10-14 December 2013

correlation causes serious overhead on the latency of the
processor for large amount of received data. We have
developed an algorithm for SAR image generation from
RADARSAT-1 raw signal data which inherently
executes parallelism for matched filtering of block data
vectors. In this algorithm matched filter implementation
can be done by dividing the impulse response function of
matched filter into number of blocks of equal lengths. To
produce final output, partial convolution results from
Fourier transform domain is shifted and summed up.
 Let us consider y(n), x*(-n) to be the received
data vector and the matched filter vector respectively.
Matched filter is the conjugate of time-reversed
transmitted complex linear FM chirp envelope x(n) of
finite duration T sampled at the rate of BT, the
transmitted bandwidth. These finite vectors x(n), y(n) are
made into blocks respectively in R and S numbers of
non-overlapping data blocks shown in Fig. 1, each block
of being of M samples.

x(n) = (n) , y(n) = (n) (1)

where (n) = x(n), ,iM ≤ n ≤ (i +1)M – 1, (n) = y(n),

,jM ≤ n ≤ (j +1)M – 1,R < S. Matched filtering is a
complex correlation between the block vectors.
Summation of outer product of blocks of (n) (n

+ l) for a lag of l samples produce identical results as in
the correlation of x(n), y(n).

r (l) = (2)

Time domain correlation (l) between any two blocks

(n) , (n + l) in (2) is implemented by FFT in

transform domain.

 (l) = IDFT [(m) (m)], 0 ≤ m ≤ (2M – 1) (3)

The first M samples in (3) account for (l) with one

zero padding for l < 0, the rest M samples are for (l)

with l > 0 as shown in Fig 1. The first outer sum in (2) is
the partial correlation of R blocks of x(n) with each block
of depending on the shift index l. The

outermost sum over all blocks of (l) is realized by

operator matrix A. It is of size (R + S) × 2RS; the factor
2 accounts for two sided even sequence of the
correlation output. The non-zero elements of A are unity.
The number of column elements being unity depends on
the block segments to be added in the transform
operation. For example, we take the case where the data
blocks are divided in two ways as shown in Fig. 1(a) and
(b), Fig. 2(a) and (b) respectively.

 i) Two blocks of matched filter vector x(n) and two
blocks of received data vector y(n).
 ii) Three blocks of matched filter vector x(n) and four
blocks of received data vector y(n).

Fig 1. Block correlation algorithm; (a) two filter data blocks, (b)
two received data blocks, (c) correlator output vector block.

In case (i), for R to be 2 and S to be 2, the operator
matrix A is given by,

Depending on the position in the lag sequence, the block
segments of (l) are added up. As shown in Fig 1(c),

the lag sequence is divided in two parts. The non-zero
elements of a matrix B of size 2RS × (R+S)M are the
subblocks of (l) as result from output of(3).

Continuing with example shown in Fig 1 (a) and (b),

 B(1,1:M) = (-l)

 B(2,1:M) = (l)

 . . .
 B(8,M+1:2*M) = (l)

The final complex correlation coefficients can be found
as block vectors of length M in the rows of the
transformed matrix, C as

C = A B (4)

Matched filter output of the block correlation algorithm

is derived from the non-zero elements of rows in C for

samples indices l > 0 as filtering is a casual process here.

Fig 2. Block correlation algorithm; (a) three filter data blocks, (b)

four received data blocks.

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 2 10-14 December 2013

In case (ii), for R to be 3 and S to be 4, the operator
matrix A is given by,

 B(1,1:M) = (-l)

 B(2,M+1:2*M) = (l)

 . . .
 B(24,M+1:2*M) = (l)

Similarly as explained in case (i), block correlation
matrix B derived as shown above. Final complex
correlation coefficients were found in the rows of the
transformed matrix C for case (ii) as well.

A. Comparison of Computational Load
 For traditional brute force correlation, the
computational requirement is one complex vector
multiplication and one inverse transform. Consider the
vector X*(m) is pre stored and if NFFT = > L + F -1,

the nearest radix-2 FFT length, then the no of complex
multiplications in this is

Cmul1 = 2(NFFT/2 – NFFT / 2) + NFFT =

NFFT (5)

 In block correlation algorithm, consider 2M =
NFFT/ , hence the complex multiplication involved in

computing is

Cmul = 2 [NFFT /)] +

NFFT/ .

 If we consider, L = NFFT/2, then S = ; total

number of complex multiplication in block correlation
algorithm is

Cmult2 = S. Cmul = NFFT - .

(6)

Here, = NFFT that grows

substantially with the received data vector becoming
longer. Cmult2 shows saving in numerical complex
computation by block correlator algorithm.
 Consider the two cases to verify the
computational load of complex multiplications as the
number of received data blocks increases as shown in
Fig 3.It is shown that with increase in the number of
received data blocks that is increasing the length of
received data vector y(n) the number of complex

multiplication decreases because of parallel algorithm in
(6).

Fig 3. Comparison of computation load of complex multiplications.

III IMPLEMENTATION ON CUDA-GPGPU

PLATFORM

CUDA programs consist of a number of C functions
called kernels that are to be executed on devices as
threads and for that, data stored in the device memory is
being processed. CUDA provides shared memory and
barrier synchronization [4]. For example, Nvidia Quadro
FX 1800 having 512 maximum number of threads per
block and 64 processing core.

A GPGPU device has its own memory system
including the global memory (large but slow), constant
and texture read-only memories providing reduction of
memory latency. Each SM has also a 16 kB of fast
shared memory that can be used for sharing data among
threads within a block.

A. Parallel Algorithm Implemented in CUDA-

GPGPU

The SAR raw data samples forming a signal

vector are processed using CPU - GPGPU combination
for case (i) in section 2 in the following manner:

 Transmitted and received signal vector blocks
are partitioned into TX1 & TX2 and RX1 &
RX2 of equal length. These four individual
blocks are copied from CPU to GPU on which
FFT computation are performed using CUFFT
CUDA [5] library.

 After FFT operation on each received signal
block, it is multiplied with both FFT output of
transmit vector i.e. TX1 & TX2 using multiple
threads followed by IFFT on the multiplication
output.

 The four individual result obtained from IFFT
in GPU is copied back to CPU.

 These individual result obtained are summed up
to get final result.

A block diagram of the parallel algorithm
implemented on GPU is given in Fig. 4.

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 3 10-14 December 2013

Fig 4. Block diagram of the parallel algorithm implemented on
GPGPU for case (i) in section 2.

Fig 5. Serial and Concurrent implementation of algorithm in
CUDA- GPGPU

B. Radar Filter Implementation

The radar filter for the vectors y(n), x*(-n)
without the parallel algorithm is implemented on CPU
having Intel® Xeon® Processor E5-2620 with 2.20GHz
processing speed and on GPGPU using CUDA on a
GeForce FX1800. The computational time of CPU-based
and GPU-based processors is summarized in Table 1 and
graphically illustrated by Fig 6. It can be seen clearly
that substantial computational speed improvement is
achieved using GPGPU as number of FFT sample points
goes on increasing with large length of received vector.

Table 1 Summary of Computational Timing in C/C++ and CUDA.

Fig 6. Matched Filter Computational timing

IV SAR IMAGE GENERATION IN CUDA-
GPGPU PLATFORM

 Signal processing for SAR image formation is
done mainly in two steps, the first one is processing of
the input raw video data in range dimension followed by
processing the range image processed data in the
azimuth dimension.
 In this paper for SAR data processing, video
data block of size (1024 × 2048) and transmit data vector
of size (1349×1) are first read into CPU. Each block is of
512 samples is formed by partitioned transmitting data
vector block. Video data is rearranged in S = 4
partitioned data blocks as mentioned in section II above.
In all, twelve blocks of partitioned correlation operations
are to be performed in this example for every range line
of video data.
 After partitioned data blocks, FFT related
operations are performed on GPU as show in Fig. 4.
Kernels are created to perform the micro-operations
shown in the Fig 5. For optimum usage of on-chip
memory in SP devices and to reduce latency in
communication from CPU to GPU following
optimization are done:

 Threads are identified corresponding to the

algorithms those are computationally intensive (e.g.,
data conversion, FFT, complex transpose, etc.)

 To reduce time in host-device memory transfer
prudent memory usage and data transfer are adopted

 The efficient utilization of resources in SMs of GPU
is made by dynamic assignment of thread blocks.

 For the matrix multiplication of complex valued
signal, CUDA CUBLAS routine is used in GPGPU.
Every range line processed row data is returned to the
host memory space. After completion of processing in
range dimension, processing in azimuth dimension starts.
Azimuth signal processing executes almost in a similar
way as range signal processing is done.

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 4 10-14 December 2013

 The performance of SAR image generation in
different GPGPU platforms such as Fx1800, Tesla C870
are compared with performance of workstations with
AMD Athlon(tm) 64 X2 Dual Core Processor 4600 at
2.411GHz. The accelerated speedup in execution of
range, azimuth, and complete image generation are
shown in Table II-IV for a block of (1024 × 2048)
RADARSAT-1 SAR video complex data. The final
RADARSAT SAR magnitude image chip generated by
the CUDA flow diagram is displayed in Fig 7.

Fig.7 Processed SAR image from RADARSAT-1 video data in
CUDA programming.

CONCLUSION
Parallel processing of raw, video SAR data in

high performance computing platforms such as GPGPU
is shown in the paper. The programming environment is
CUDA that allows direct access to GPGPU. Detailed
analysis of speed performance in SAR image generation
is shown in the paper.

ACKNOWLEDGEMENT

The authors acknowledge the support from Vice
Chancellor, DIAT, Pune received in the form of in-house
project grant to execute the work in the paper.

REFERENCES

1. I. G. Cumming and F. H. Wong , Digital Processing

of Synthetic-Aperture Radar Data: Algorithms and
Implementations, Artech House, 2005

2. J. Suh , U. Monte, and V. K. Prasanna, Parallel
implementation of synthetic aperture radar on high
performance computing platforms, Proc. IEEE-
ICAPP 97, 3rd Int. Conf. on Algorithms and
Architectures for Parallel Processing, pp. 557 - 570,
Dec 1997.

3. J. Nickolls, I. Buck, M. Garland and K. Skadron,
Scalable parallel programming with CUDA , Queue,
ACM, vol.6, no. 2, pp. 40-53, 2008.

4. D. B. Kirk and W. W. Hwu, Programming
Massively Parallel Processors A Hands-on
Approach, NVIDIA, 2010.

5. CUFFT library, NVIDIA, Oct 2012.

BIO DATA OF AUTHOR(S)

Prajakta R.Tapkir was born in Pune,
India, in 1990. She received her
Bachelor’s degree in electronics
and telecommunication engineering
from University of Pune, India, in
2012. She is currently working as a
junior research fellow in Defence
Institute of Advanced Technology

(DIAT), Pune. Her research interests include image,
SAR signal processing, embedded system.

Saurabh Thakur was born in Nagpur,
India, in 1986.He is working as senior
research fellow (SRF) in Defence
Institute of Advanced Technology
(DIAT), Pune. He has completed his
bachelor in ‘09 and master in
‘11engineering from University of
Pune (UOP).His area of interest is

High Performance Computing (HPC), Image and SAR
Signal processing, Wireless Sensor Network.

Dr. C. Bhattacharya (M’01) of the
Ministry of Defence, Government of
India. Prior to this he was a scientist
with Defence Electronics Applications
Lab (DEAL), Dehradun, India since
December 1996, and he headed the
Sensor Signal Processing Section for
millimetre wave sensors there. His

research areas include signal processing for various radar
and sensor configurations with particular interest in SAR
data processing, stochastic processes, and
Bioinformatics.

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 5 10-14 December 2013

