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Abstract: 

              High resolution imagery from synthetic aperture 
radar (SAR) video data requires numerical computations of 
the order of gigaflops (GFLOP). The computational burden 
increases with the image size and the amount of input raw 
video signals. General purpose graphic processor units 
(GPGPU) can play a pivotal role in parallel processing the 
raw video data to generate SAR imagery in a much faster 
process. In this paper, we show utilization of GPGPU 
processors in compute unified device architecture (CUDA®) 
environment for implementation of a parallel algorithm for 
SAR image generation. 
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I   INTRODUCTION 

 
 Satellite-borne synthetic aperture radar (SAR) 
video raw data requires large number of computational 
procedures to generate an image. For example, an earth 
observation satellite RADARSAT-1 in fine beam mode 
of operation with a C-band SAR sensor as payload is 
3.6Km in azimuth and 50Km in range [1]. The scale of 
numerical computations is of the order of gigaflops 
(GFLOPs) that may be appreciated from the fact that 
ground footprint of radar backscattering results in an 
image with 5.26m spatial fine resolution in azimuth and 
7.2m ground range resolution. 
 In order to improve efficiency in SAR video 
data processing, one way is to distribute the computation 
load among several processing elements (PEs). There are 
several bottlenecks to such distributed processing such 
as dependencies on the configuration of PEs, their 
interconnectedness, message passing protocols, and data 
transmission bandwidth among PEs [2]. Although this 
enhances the speed of computation they do not include 
any parallel signal processing algorithms for SAR image 
formation. 
            However, in cases where the structure or flow of 
the algorithm does not map directly onto the 
architecture, we need to develop new methods to extract 
parallelism, and correspondingly improve performance. 
General purpose graphic processor unit (GPGPU) is 
architecture for high performance computing that uses 
graphics processing units (GPU) for multicore 
processing of data. GPGPU exhibit two properties such 
as data parallelism and intensive throughput of data. 
Data parallelism implies processor can execute 

operations on different data elements simultaneously. On 
the other hand, throughput intensive process means an 
algorithm is going to process lots of data elements whose 
execution will be in parallel. GPGPU platforms available 
from NVIDIA, ATI, and Intel have a large number of 
processors (of the order of a few hundred) structured to 
allow multiple threads of execution. Architecture of 
GPGPU is organized into an array of highly threaded 
streaming multiprocessors (SMs). It has number of 
streaming processors (SPs) that share control logic and 
instruction cache [3]. Comparative survey of latest 
GPGPUs, e.g., Fermi and Kepler series from NVIDIA 
shows that as the number of cores per SMs increases, 
core speed also gets increased. The number of cores in 
Tesla C2075 is 448 whereas Tesla K20C Kepler series 
has 2496 cores. Therefore the memory bandwidth also 
increases in advanced generation of GPGPUs. 
 In this work, we utilize compute unified device 
architecture (CUDA) as the programming platform. 
CUDA includes such a programming model along with 
hardware support that facilitates parallel implementation. 
It allows developers to harness the underlying massively 
parallel compute engine with C-programming language. 
An algorithm is broken into CUDA threads those are 
scheduled for concurrent execution. We describe a 
parallel algorithm of SAR image processing that 
inherently exploits parallelism in execution. Through 
this work we have developed two levels of parallelism, 
one is devising a parallel algorithm for SAR signal 
processing, and another is an actual implementation and 
execution in GPGPU. 
 In the following sections we describe working 
of the parallel algorithm that treats SAR data vectors in 
segmented blocks and does processing over the blocks 
simultaneously. We show overall computational speed 
improvement when this segmented or block processing 
algorithm is executed with CUDA programming in 
GPGPU. Finally, we show actual SAR image generation 
from RADARSAT-1 raw video data and demonstrate 
improved performance in computational speed. 
 
II   ALGORITHM FOR PARALLEL PROCESSING 

OF SAR IMAGE GENERATION 
 

 SAR signal processing works on the principle 
of matching received signal phase with transmitted 
signal phase. This can be done by fast Fourier transform 
(FFT) based techniques. Traditional brute force 

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 1 10-14 December 2013



correlation causes serious overhead on the latency of the 
processor for large amount of received data. We have 
developed an algorithm for SAR image generation from 
RADARSAT-1 raw signal data which inherently 
executes parallelism for matched filtering of block data 
vectors. In this algorithm matched filter implementation 
can be done by dividing the impulse response function of 
matched filter into number of blocks of equal lengths. To 
produce final output, partial convolution results from 
Fourier transform domain is shifted and summed up. 
 Let us consider y(n), x*(-n) to be the received 
data vector and the matched filter vector respectively. 
Matched filter is the conjugate of time-reversed 
transmitted complex linear FM chirp envelope x(n) of 
finite duration T sampled at the rate of BT, the 
transmitted bandwidth. These finite vectors x(n), y(n) are  
made into blocks respectively in R and S numbers of 
non-overlapping data blocks shown in Fig. 1, each block 
of being of M samples. 
 

x(n) = (n) , y(n) = (n)                      (1) 

 
where (n) = x(n), ,iM ≤ n ≤ (i +1)M – 1, (n) = y(n), 

,jM ≤ n ≤ ( j +1)M – 1,R < S. Matched filtering is a 
complex correlation between the block vectors. 
Summation of outer product of blocks of (n) (n 

+ l) for a lag of  l samples produce identical results as in 
the correlation of x(n), y(n).  
 

r (l) =                    (2) 

 
Time domain correlation  (l) between any two blocks 

(n) , (n + l) in (2) is implemented by FFT in 

transform domain. 
 

 (l) = IDFT [ (m)  (m)], 0 ≤  m ≤ (2M – 1)       (3) 

 
The first M samples in (3) account for  (l) with one 

zero padding for l < 0, the rest M samples are for  (l) 

with l > 0 as shown in Fig 1. The first outer sum in (2) is 
the partial correlation of R blocks of x(n) with each block 
of   depending on the shift index l. The 

outermost sum over all blocks of  (l) is realized by 

operator matrix A. It is of size (R + S) × 2RS; the factor 
2 accounts for two sided even sequence of the 
correlation output. The non-zero elements of A are unity. 
The number of column elements being unity depends on 
the block segments to be added in the transform 
operation. For example, we take the case where the data 
blocks are divided in two ways as shown in Fig. 1(a) and 
(b), Fig. 2(a) and  (b) respectively. 
 
 i)   Two blocks of matched filter vector x(n) and two 
blocks of received data vector y(n). 
 ii)  Three blocks of matched filter vector x(n)  and four 
blocks of received data vector y(n). 
 
 

 

 
 

Fig 1. Block correlation algorithm; (a) two filter data blocks, (b) 
two received data blocks, (c) correlator output vector block. 

 

In case (i), for R to be 2 and S to be 2, the operator 
matrix A is given by, 

 

 
 
Depending on the position in the lag sequence, the block 
segments of  (l) are added up. As shown in Fig 1(c), 

the lag sequence is divided in two parts. The non-zero 
elements of a matrix B of size 2RS × (R+S)M are the 
subblocks of (l) as result from output of(3). 

Continuing with example shown in Fig 1 (a) and (b), 
 
  B(1,1:M) =  (-l) 

  B(2,1:M) =  (l) 

          . . . 
  B(8,M+1:2*M) = (l)   

The final complex correlation coefficients can be found 
as block vectors of length M in the rows of the 
transformed matrix, C as 
 

C = A B                                      (4) 
 
Matched filter output of the block correlation algorithm 

is derived from the non-zero elements of rows in C for 

samples indices l > 0 as filtering is a casual process here. 

 

 
Fig 2. Block correlation algorithm; (a) three filter data blocks, (b) 

four received data blocks. 
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In case (ii), for R to be 3 and S to be 4, the operator 
matrix A is given by, 
 

 
    
  B(1,1:M) =  (-l) 

  B(2,M+1:2*M) =  (l) 

                   . . . 
  B(24,M+1:2*M) = (l)   

 
Similarly as explained in case (i), block correlation 
matrix B derived as shown above. Final complex 
correlation coefficients were found in the rows of the 
transformed matrix C for case (ii) as well. 
 
A. Comparison of Computational Load  
 For traditional brute force correlation, the 
computational requirement is one complex vector 
multiplication and one inverse transform. Consider the 
vector X*(m) is pre stored and if NFFT =  > L + F -1, 

the nearest radix-2 FFT length, then the no of complex 
multiplications in this is  
 
Cmul1 = 2(NFFT/2  – NFFT / 2) + NFFT = 

NFFT                       (5) 

 
 In block correlation algorithm, consider 2M = 
NFFT/ , hence the complex multiplication involved in 

computing is  
 

Cmul = 2 [NFFT / ) ] + 

NFFT/ . 

 
 If we consider, L = NFFT/2, then S = ; total 

number of complex multiplication in block correlation 
algorithm is  
 
Cmult2 = S. Cmul = NFFT  - .              

(6) 
 
Here,  = NFFT   that grows 

substantially with the received data vector becoming 
longer. Cmult2 shows saving in numerical complex 
computation by block correlator algorithm.   
 Consider the two cases to verify the 
computational load of complex multiplications as the 
number of received data blocks increases as shown in 
Fig 3.It is shown that with increase in the number of 
received data blocks that is increasing the length of 
received data vector y(n) the number of complex 

multiplication decreases because of parallel  algorithm in 
(6). 
 

 
 
Fig 3. Comparison of computation load of complex multiplications. 

    
 
III   IMPLEMENTATION ON CUDA-GPGPU 

PLATFORM 
 

CUDA programs consist of a number of C functions 
called kernels that are to be executed on devices as 
threads and for that, data stored in the device memory is 
being processed. CUDA provides shared memory and 
barrier synchronization [4]. For example, Nvidia Quadro 
FX 1800 having 512 maximum number of threads per 
block and 64 processing core. 

A GPGPU device has its own memory system 
including the global memory (large but slow), constant 
and texture read-only memories providing reduction of 
memory latency. Each SM has also a 16 kB of fast 
shared memory that can be used for sharing data among 
threads within a block.  

 
A. Parallel Algorithm Implemented in CUDA-

GPGPU 
 
The SAR raw data samples forming a signal 

vector are processed using CPU - GPGPU combination 
for case (i) in section 2 in the following manner:  

 Transmitted and received signal vector blocks 
are partitioned into TX1 & TX2 and RX1 & 
RX2 of equal length. These four individual 
blocks are copied from CPU to GPU on which 
FFT computation are performed using CUFFT 
CUDA [5] library. 

 After FFT operation on each received signal 
block, it is multiplied with both FFT output of 
transmit vector i.e. TX1 & TX2 using multiple 
threads followed by IFFT on the multiplication 
output. 

 The four individual result obtained from IFFT 
in GPU is copied back to CPU.  

 These individual result obtained are summed up 
to get final result. 

A block diagram of the parallel algorithm 
implemented on GPU is given in Fig. 4.   
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Fig 4. Block diagram of the parallel algorithm implemented on 
GPGPU for case (i) in section 2. 

 

Fig 5. Serial and Concurrent implementation of algorithm in 
CUDA- GPGPU 

B. Radar Filter Implementation 
 

The radar filter for the vectors y(n), x*(-n) 
without the parallel algorithm  is implemented on CPU 
having Intel® Xeon® Processor E5-2620 with 2.20GHz 
processing speed and on GPGPU using CUDA on a 
GeForce FX1800. The computational time of CPU-based 
and GPU-based processors is summarized in Table 1 and 
graphically illustrated by Fig 6. It can be seen clearly 
that substantial computational speed improvement is 
achieved using GPGPU as number of FFT sample points 
goes on increasing with large length of received vector. 
 

 
Table 1 Summary of Computational Timing in C/C++  and CUDA. 

 

 

 

Fig 6. Matched Filter Computational timing 

IV   SAR IMAGE GENERATION IN CUDA-
GPGPU PLATFORM 

 Signal processing for SAR image formation is 
done mainly in two steps, the first one is processing of 
the input raw video data in range dimension followed by 
processing the range image processed data in the 
azimuth dimension. 
  In this paper for SAR data processing, video 
data block of size (1024 × 2048) and transmit data vector 
of size (1349×1) are first read into CPU. Each block is of 
512 samples is formed by partitioned transmitting data 
vector block. Video data is rearranged in S = 4 
partitioned data blocks as mentioned in section II above. 
In all, twelve blocks of partitioned correlation operations 
are to be performed in this example for every range line 
of video data. 
 After partitioned data blocks, FFT related 
operations are performed on GPU as show in Fig. 4. 
Kernels are created to perform the micro-operations 
shown in the Fig 5. For optimum usage of on-chip 
memory in SP devices and to reduce latency in 
communication from CPU to GPU following 
optimization are done:  
 
 Threads are identified corresponding to the 

algorithms those are computationally intensive (e.g., 
data conversion, FFT, complex transpose, etc.) 

 To reduce time in host-device memory transfer 
prudent memory usage and data transfer are adopted  

 The efficient utilization of resources in SMs of GPU 
is made by dynamic assignment of thread blocks. 

 
 For the matrix multiplication of complex valued 
signal, CUDA CUBLAS routine is used in GPGPU. 
Every range line processed row data is returned to the 
host memory space. After completion of processing in 
range dimension, processing in azimuth dimension starts. 
Azimuth signal processing executes almost in a similar 
way as range signal processing is done. 
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 The performance of SAR image generation in 
different GPGPU platforms such as Fx1800, Tesla C870 
are compared with performance of workstations with 
AMD Athlon(tm) 64 X2 Dual Core Processor 4600 at 
2.411GHz. The accelerated speedup in execution of 
range, azimuth, and complete image generation are 
shown in Table II-IV for a block of (1024 × 2048) 
RADARSAT-1 SAR video complex data. The final 
RADARSAT SAR magnitude image chip generated by 
the CUDA flow diagram is displayed in Fig 7. 
 

 

Fig.7 Processed SAR image from RADARSAT-1 video data in 
CUDA programming. 

 
 

CONCLUSION 
Parallel processing of raw, video SAR data in 

high performance computing platforms such as GPGPU 
is shown in the paper. The programming environment is 
CUDA that allows direct access to GPGPU. Detailed 
analysis of speed performance in SAR image generation 
is shown in the paper. 
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