
GPU Based Performance Acceleration of Radar
Imaging Algorithms

V. Jithesh1, Dr. K. Poulose Jacob2

1Electronics and Radar Development Establishment (LRDE), Bangalore, India
2Department of Computer Science, Cochin University of Science & Technology (CUSAT), Cochin, India

jithesh_lrde@rediffmail.com

Abstract

We consider the performance acceleration of the
conventional Time Domain Backprojection and Kirchhoff
Migration algorithms for imaging concealed targets. The
Compute Unified Device Architecture (CUDA) and Open
Computing Language (OpenCL) are used here for
accelerating these algorithms on Graphics Processing
Units (GPUs). Data generated by means of analytical
methods, simulation and experiment are used for
validation and performance comparison.

Keywords: Radar Imaging, Backprojection, Kirchhoff
Migration, SAR, GPR, TWIR, CUDA, OpenCL, GPU,
GPRMax

I. INTRODUCTION

Radar imaging has potential applications in the

field of Synthetic Aperture Radar (SAR), Medical
Imaging, Ground Penetrating Radar (GPR), Through–the–
Wall Imaging Radar (TWIR), Foliage Penetration Radar,
Forensic Investigation, Baggage Scanning, Stand-off
detection of threat objects concealed under clothing etc.
The common radar imaging algorithms include
Backprojection (time & frequency), Kirchhoff Migration,
Range Doppler Algorithm (RDA), Range Migration
Algorithm (RMA), Chirp Scaling Algorithm (CSA),
Stripmap SAR, Impulse SAR, etc.

Most of these imaging algorithms are data-
massive and compute-intensive and hence the overall
throughput of the application is heavily dependent on the
computational efficiency of the underlying hardware.
Thus for practical implementations a parallel architecture
is always preferable to achieve a real-time performance.
Conventional dual or quad core CPU does not meet the
massive data processing requirements for radar imaging,
especially for very large data sets and high resolution.

During the past couple of years Graphics

Processing Units (GPUs) have evolved into highly
parallel, multithreaded, many-core co-processors with
tremendous computational power. They have very high
memory bandwidth and are capable of executing general-
purpose computations with extreme efficiency. GPU
computing has created a quantum shift in computing
architecture by introducing a hybrid model in which
GPUs work in conjunction with CPUs. Technologies like
NVIDIA Compute Unified Device Architecture (CUDA),

Khronos Open Computing Language (OpenCL) and
Microsoft C++ AMP are widely used in GPU computing.

This paper describes the GPU implementation
aspects of two of the most commonly used radar imaging
algorithms namely Time Domain Backprojection and
Kirchhoff Migration in detecting concealed targets. Both
CUDA and OpenCL implementations are discussed here
and the performances of these implementations are
compared against CPU implementations. Synthetic,
simulated and experimental data sets were used for this
study.

The next two sections briefly outline the Time
domain Backprojection and Kirchhoff Migration
algorithms. The CUDA and OpenCL implementation
aspects are explained in Sections IV & V respectively.
Both the implementations use NVIDIA CUDA SDK 4.2
on an NVIDIA GeForce GT 610 GPU. The results and
performance comparison details are described under
section VI.

II. TIME DOMAIN BACKPROJECTION

Backprojection is a matched filter implementation of
time-domain correlation. The idea is to correlate data
collected at each aperture position as a function of round-
trip delay time. Backprojection coherently sums the
sampled radar returns for each pixel of the image map.
Coherent summation is a process whereby the signal
obtained at each aperture position is time-shifted to match
or align, it to a particular pixel element in the image map.

The time domain backprojection is performed
through the following equation:

1
(,) (,)

K

k
k

I y z b y t
=

= ∑

where (y, z) is the point/pixel to be focused, K is the
number of measurement locations, b(yk, t) is the B-scan
data [2] collected along a single line at discrete points (yk,
z’),
k = 1, 2, ..., K, at time instant t, and t is the two-way travel
time from Transmitting antenna at the kth location to the
point (y, z) and back to the kth Receiving antenna. If t does
not match with any time sample, numerical interpolation
may be employed to compute an approximate value of b
at t. More details on the theory can e found in [9]-[12].

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 1 10-14 December 2013

III. KIRCHHOFF MIGRATION

The basic idea in the Kirchhoff Migration is to
back-propagate the measured wave front to a plane at
t = 0, using an integral solution method to the scalar wave
equation. So this migration method involves back-
propagation or inverse extrapolation to remove the effects
of wave field propagation ([2]-[8]).

The imaging equation for Kirchhoff Migration is
as follows:

'

'
1

1 cos(,) (,)
2

K

k
km m

r r
I y z b y t

v t v r r
θ

π =

−∂= =
∂ −∑

where, r = (y, z) is the point to be migrated, r’ = (yk, z’) is
the source (Transmitting Antenna) location, |r - r’| is the
distance between r and r’, K is the number of
measurement locations, vm is the velocity of the wave
inside the medium of propagation, b(yk, t) is the B-scan
data collected along a single line at discrete points yk,
k = 1, 2, ..., K, at time instant t, and cosθ = |z - z’| / |r - r’|

IV. CUDA IMPLEMENTATION

The CUDA programming ([19]-[25]) supports
the CUDA threads executed on a physically separate
device (GPU) that operates as a coprocessor to the host
(CPU) running the program. The program consists of a
series of sequential and parallel execution phases.
Sequential phases have little or no parallelism, which are
executed on the CPU as host code. Parallel phases have
rich data parallelism, which are implemented as a set of
kernel function (piece of code to be executed on the GPU)
on GPU.

The fundamental means of parallel execution in
CUDA is data-parallel threads. Launching a CUDA
kernel function creates a grid of parallel threads, all of
which execute the kernel function. Each CUDA grid
typically is comprised of thousands to millions of
lightweight GPU threads per kernel invocation. At the top
level, each grid consists of one or more thread blocks. All
blocks in a grid have the same number of threads.

CUDA C implementation includes the following
steps: 1. Allocation of host memory and loading the B-
scan data to host memory. 2. Allocation of device
memory through the function cudaMalloc. 3. Copying
data from host memory to device memory through
cudaMemcpy. 4. Invocation of kernel function(s) to
perform the computation. 5. Copying data from device
memory to host memory through cudaMemcpy. 6.
Deallocation of host and device memory spaces.

V. OPENCL IMPLEMENTATION

OpenCL ([24]-[28]) makes use of a data
parallelism model that has direct correspondence with the
CUDA data parallelism model. When a kernel function is
launched, its code is run by work items, which correspond

to CUDA threads. An index space defines the work items
and how data are mapped to the work items; that is,
OpenCL work items are identified by global dimension
index ranges (NDRanges). Work items form work groups,
which correspond to CUDA thread blocks. The NDRange
(CUDA grid) contains all work items. The following are
the steps involved in the implementation.

1. Discover and initialize the platforms
(clGetPlatformIDs)
2. Discover and initialize the devices (clGetDeviceIDs)
3. Create a context (clCreateContext)
4. Create a command queue (clCreateCommandQueue)
5. Create device buffers (clCreateBuffer)
6. Write host data to device buffers
(clEnqueueWriteBuffer)
7. Create and compile the program
(clCreateProgramWithSource)
8. Create the kernels (clCreateKernel)
9. Set the kernel arguments (clSetKernelArg)
10. Configure the work-item structure
11. Enqueue the kernel for execution
(clEnqueueNDRangeKernel)
12. Read the output buffer back to the host
(clEnqueueReadBuffer)
13. Release OpenCL resources (clReleaseXXX)

VI. RESULTS

An NVIDIA GeForce GT 610 GPU (810 MHz, 2
GB Graphics memory, 48 cores, 8 blocks, CUDA 2.1
compute support) on an Intel Core 2 Duo (3.6 GHz, 4 GB
RAM, Windows 7 OS) computer has been used in this
study. CUDA-C and NVIDIA OpenCL versions were
used in the CUDA and OpenCL implementations of the
algorithms. The input data and final results of the analysis
are stored in comma separated variables (csv) format and
are plotted using MATLAB.

Three types of data sets are used in this study:
synthetic data, simulated data and experimental data. It
should be noted that travel time corrections were not
performed while computing the Time of Arrival (TOA
[7]) so that the actual positions of the targets and their
positions in the focused images won’t match. Moreover,
no data pre-processing techniques were applied on these
data sets.

The synthetic B-scan data was generated by
analytically computing the response of two point targets
to a Gaussian input pulse (0.5 ns pulse width) in a 10 m ×
10 m domain [10]. The targets were placed at (4, 4) and
(8, 3) and their reflections were recorded at 96 locations
along the cross range for a duration of 100 ns at each
location (1024 samples). The problem geometry and the
focused images using Kirchhoff & Backprojection
algorithms are shown in Figure 1.

For generating simulated B-scan data, the public
domain software GPRMax 2.0 (based on the Finite-

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 2 10-14 December 2013

Difference Time-Domain method for Electromagnetics)
has been used [29]. For GPR data simulation, a problem
domain of size 2.3 m × 0.2 m was considered. The
problem geometry is shown in Figure 2. The targets are
circular and 8 of them are Perfect Electric Conductors
(the first four and the last four) and the rest are vacuum
(shown in the middle) and are buried in wet sand. Return
signals were recorded at 115 transmit/receive locations
and 2036 range bins were considered in this case. A
Kirchhoff migrated output is shown in Figure 2.

Simulated B-scan data was generated using
GPRMax for TWIR case as well, and a 0.3 m × 0.6 m
domain was considered. A concrete wall separates the
transmit/receive antenna and the circular PEC target.
Vacuum is considered everywhere else in the problem
domain. 1357 data samples were recorded at each of the
41 transmit/receive locations. The problem geometry and
corresponding focused image are shown in Figure 3.

An experimental set-up was used for collecting
data for Through Wall Radar Imaging. This set-up
consists of an EATON Advanced Electronics’ Impulse
Generator (60 kHz - 1GHz) and a Tektronix DPO 71604
Digital Phosphor Oscilloscope with 16 GHz/50 GS/s.

For this measurement a bi-static pair of horn
antennas was used with antenna separation of 14 cm
(centre to centre). To generate a 2-D scanning array of
antennas the antenna platform was manually moved along
the cross range (X) and height (Z) directions. A cross
range resolution of 30 cm and a height resolution of 15
cm were considered in this experiment. Initial height from
ground is 110 cm, and measurements were taken at 125
cm and 140 cm as well. A scan array size of 8 × 3 was
considered for the C-scan measurement (8 points along
cross range and 3 points along height directions).
Distance of the Transmitter/ Receiver pair from wall is
27.5 cm.

A horn antenna, a conical antenna and a metallic
cylinder were used as targets. A wooden wall of thickness
8 cm was present between objects and the antenna.
Another wooden sheet (with metallic frame), which is
part of a cubicle, was present in between the targets and
the first wall. In this configuration, a part of the metallic
frame also falls in the imaging area (which makes the
number of targets four). The data set has 1250 samples
and a B-scan subset of this data set at a height of 125 cm
was chosen for imaging. The focused image is shown in
Figure 4.

Figure 1. Synthetic Data - Problem Domain (top), Backprojected
Image (middle) & Migrated Image (bottom)

Figure 2. Simulated Data – GPR (Not Scaled) Problem Domain
(top) & Migrated Image (bottom)

Figure 3. Simulated Data - TWIR Problem Domain (left) &
Backprojected Image (right)

Wet Sand

C
o
n
c
r
e

t
e

0

10
10 Cross-Range (x)

Ra
ng

e
(y

)

0

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 3 10-14 December 2013

Figure 4. Experimental Data - Measurement Setup (top), Targets
(middle) & Backprojected Image (bottom)

 Figure 5 shows the computation time of the two
algorithms for C++ (for CPU), CUDA-C & OpenCL
implementations and the performance acceleration
achieved by the CUDA and OpenCL implementations on
the GPU over a pure CPU execution (single core) using
C++, in case of the synthetic data. The executions were
performed 25 times and the average computation time in
millisecond is plotted here. The data read/write time is not
considered. As expected CUDA offered more acceleration
than OpenCL in our study. This is mainly due to the fact
that the NVIDIA version of OpenCL was used here and it
will definitely underperform CUDA, which is optimized
to run on NVIDIA GPUs. Probably an AMD/ATI
OpenCL version can perform better on this device and
may outperform on an ATI GPU.

Figure 5. CPU Vs GPU for Synthetic Data (Image Size: 512 × 512
Pixels) - Computation Time (top) & Performance Acceleration
(bottom)

VII. CONCLUSIONS

Considerable performance acceleration (in the
order of 60 to 70 times) could be achieved by running the
Backprojection and Kirchhoff Migration algorithms on a
low-end GPU. CUDA and OpenCL technologies were
used here. The fundamental difference between CUDA
and OpenCL is that CUDA code can run only on NVIDIA
GPUs, where as OpenCL code is heterogeneous.

Image resolution beyond 1024 × 1024 pixels
resolution could not be considered during this study. This
is due to an inherent problem in Windows XP/Vista/7
Operating System (OS). These higher resolution GPU
computation takes more than 2 seconds to complete and
Windows watchdog application (part of the OS) kills
applications sharing the same resources and taking more
than 2 s to complete. Here the display driver was also
sharing the same GPU since Windows OS disables
onboard graphics once the Graphics card is installed. A
BIOS configuration may be possible to enable both
onboard graphics and GPU at the same time, but it was
not supported in our computer. Modifying the Windows
registry to set the watchdog’s time out value higher is
another option, but is not a recommended approach and is
not a permanent solution. Using an non-Windows OS like
Linux may help in resolving the issue.

C
om

pu
ta

tio
n

T
im

e
(m

s)

Pe
rf

or
m

an
ce

 A
cc

el
er

at
io

n

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 4 10-14 December 2013

The performance can further be improved by
optimizing the code by selecting optimum registry and
block sizes and other performance optimization strategies.
Executing the code on advanced GPUs like NVIDIA
Tesla C 2075 (512 cores) or Tesla K10, K20 & K20X
which are having more than 2000 cores and higher clock
speed & graphics memory will accelerate it further. Intel
Xeon Phi Coprocessor is another promising hardware for
accelerating the performance of these algorithms. These
possibilities will be explored in future.

The acceleration observed is mainly due to the
fact that, in these algorithms, the image intensity is
calculated on a pixel-by-pixel basis. Hence how far GPU
can accelerate other radar imaging algorithms has to be
seen. CPU implementations (C++) of some of these
algorithms like Frequency Domain Backprojection, RDA,
RMA and Extended CSA were done in this regard ([16]-
[18]). The GPU implementation is part of the future work
in this dimension.

REFERENCES

[1] David J Daniels, “EM Detection of Concealed Targets”, Wiley,
2009.
[2] David J Daniels, “Ground Penetrating Radar”, Second Ed., IEE,
2004.
[3] O. Yilmaz, “Seismic Data Analysis Vol I & II”, Society of
Exploration Geophysicists, 2001.
[4] Jon F.Claerbout and IdaGreen, “Basic Earth Imaging” , Stanford
University, 2009.
 [5] Jon F. Claerbout, “Fundamentals of Geophysical Data Processing”,
Blackwell Scientific Publications, 1985.
[6] Gary F. Margrave, “Numerical methods for Exploration
Seismology”, 2003.
[7] Michal Aftanas, “Through Wall Imaging With UWB Radar System”,
PhD Thesis, Technical University of Kosice, 2009.
[8] Bart SCHEERS, “Ultra-Wideband Ground Penetrating Radar, with
Application to the Detection of Anti Personnel Landmines”, PhD Thesis,
Universite Catholique De Louvain Laboratoire D’hyperequences,
Brussels, 2001.
 [9] J Boutros and Greg Barrie, ”Ultra-wideband Synthetic Aperture
radar Imaging”, Defence R & D Canada (DRDC), 2003.
[10] Greg Barrie, “Ultra-wideband Synthetic Aperture Data and Image
Processing”, Defence R & D Canada (DRDC), 2003.
[11] GregBarrie, “Through-Wall Synthetic Aperture Radar (TWSAR)
3D Imaging”, Defence R & D Canada (DRDC), 2004.
[12] S. Gauthier, E. Hung, and W. Chamma, “Surveillance Through
Concrete Walls”, Proceedings of SPIE 5403, pp. 597-608, Dec. 2004.
[13] L. V. Kempen, “Ground Penetrating Radar for Anti-personnel
Landmine Detection”, Ph.D. Dissertation, Vrije Universiteit Brussel,
2006.
[14] E. M. Johansson and J. E. Mast, “Three-dimensional Ground-
Ppenetrating Radar Imaging Using Synthetic Aperture Time-domain
Focusing”, Proceedings of SPIE, vol. 2275, pp. 205-214, Sep. 1994.
[15] C. Lei and S. Ouyang, “Through-wall Surveillance using Ultra-
wideband Short Pulse Radar: Numerical Simulation”, Industrial
Electronics and Applications, pp. 1551- 1554, May 2007.
[16] Walter G. Carrara, Ron S. Goodman, and Ronald M. Majewski.
“Spotlight Synthetic Aperture Radar Signal Processing Algorithms”,
Artech House, 1995.
[17] Ian G Cumming, Frank H Wong, “Digital Processing of Synthetic
Aperture Radar Data: Algorithms and Implementation”, Artech House,
Boston, 2005.
[18] William L. Melvin, James A. Scheer, “Principles of Modern Radar:
Vol. II: Advanced Techniques”, SciTech Publishing, 2013.
[19] Jason Sanders Edward Kandrot, “CUDA by Example ”, Addison-
Wesley, 2011.

[20] Rob Farber, “CUDA Application Design and Development”,
Elsevier, 2011.
[21] “NVIDIA CUDA C Programming Guide”, Version 4.2, 2012.
[22] “CUDA API Reference Manaul”, Version 4.2, March 2012.
[23] Shane Cook, “CUDA Programming: A Developer’s Guide to
Parallel Computing with GPUs”, Morgan Kaufmann (Elsevier), 2013.
[24] David B. Kirk and Wen-mei W. Hwu, “Programming Massively
Parallel Computers”, Elsevier, 2010.
[25] Thomas Rauber, Gudula Runger, “Parallel Programming for
Multicore and Cluster Systems”, Springer-Verlag, 2010.
[26] Matthew Scarpino, “OpenCL in Action”, Manning Publications
Co., 2012.
[27] A. Munshi, et al., “OpenCL Programming Guide”, Pearson, 2012.
[28] Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, Dana
Schaa, “Heterogeneous Computing with OpenCL”, Morgan Kaufmann
(Elsevier), 2012.
[29] “GPRMax 2D/3D User’s Manual Version 2.0”.

BIODATA OF AUTHORS

V. Jithesh obtained his M.Sc and M.Phil
Degrees in Mathematics from the
University of Kerala and M.Tech Degree
in Computer Science from Cochin
University of Science and Technology. He
then joined Electronics and Radar
Development Establishment, Bangalore in
the year 2003. His areas of interests
include Computational Electromagnetics,
High Power Electromagnetic Copling,
High Performance/GPU Computing,
Radar Imaging and Radar Target
Discrimination.

Dr. K. Poulose Jacob, Professor of
Computer Science at Cochin University of
Science and Technology (CUSAT) since
1994, was the Director of the School of
Computer Science Studies till July 2013.
Since July 2013 he is the Pro-Vice
Chancellor of the University.
 He is the founder Director of the School
of Computer Science Studies and has been
Director of the CUSAT Computer Centre

and had initiated the Centre for Information Resource
Management. He has been the Dean of the Faculty of
Engineering and is presently Chairman, Board of Studies in
Computer Science. He is a member of Academic Council and
has been in the University Senate for 10 years. He has held
additional administrative responsibilities at CUSAT, like Head
of the Department of Computer Applications, Director - Centre
for MHO Co-operation, Director - Strategic Planning.
 He has presented research papers in several International
Conferences in Europe, USA, UK, Australia and other countries.
He has delivered invited talks at several national and
international events. He has served as a Member of the Standing
Committee of the UGC on Computer Education &
Development. He is the Zonal Coordinator of the DOEACC
Society under the Ministry of Information Technology,
Government of India. He serves as a member of the AICTE
expert panel for accreditation and approval. He has been a
member of several academic bodies of different Universities and
Institutes. He is on the editorial board of two international
journals in Computer Science.
 Dr. K.Poulose Jacob is a Professional member of the ACM
and a Life Member of the Computer Society of India. He has
more than 75 research publications to his credit. His research
interests are in Information Systems Engineering, Intelligent
Architectures and Networks.
 He has been listed in the 2010 Edition of Who’s Who in the
World® representing the world’s most accomplished
individuals.

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 5 10-14 December 2013

