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Abstract 

We consider the performance acceleration of the 
conventional Time Domain Backprojection and Kirchhoff 
Migration algorithms for imaging concealed targets. The 
Compute Unified Device Architecture (CUDA) and Open 
Computing Language (OpenCL) are used here for 
accelerating these algorithms on Graphics Processing 
Units (GPUs). Data generated by means of analytical 
methods, simulation and experiment are used for 
validation and performance comparison. 
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I.   INTRODUCTION 

 
Radar imaging has potential applications in the 

field of Synthetic Aperture Radar (SAR), Medical 
Imaging, Ground Penetrating Radar (GPR), Through–the–
Wall Imaging Radar (TWIR), Foliage Penetration Radar, 
Forensic Investigation, Baggage Scanning, Stand-off 
detection of threat objects concealed under clothing etc. 
The common radar imaging algorithms include 
Backprojection (time & frequency), Kirchhoff Migration, 
Range Doppler Algorithm (RDA), Range Migration 
Algorithm (RMA), Chirp Scaling Algorithm (CSA), 
Stripmap SAR, Impulse SAR, etc. 
 

Most of these imaging algorithms are data-
massive and compute-intensive and hence the overall 
throughput of the application is heavily dependent on the 
computational efficiency of the underlying hardware. 
Thus for practical implementations a parallel architecture 
is always preferable to achieve a real-time performance. 
Conventional dual or quad core CPU does not meet the 
massive data processing requirements for radar imaging, 
especially for very large data sets and high resolution. 

 
During the past couple of years Graphics 

Processing Units (GPUs) have evolved into highly 
parallel, multithreaded, many-core co-processors with 
tremendous computational power. They have very high 
memory bandwidth and are capable of executing general-
purpose computations with extreme efficiency. GPU 
computing has created a quantum shift in computing 
architecture by introducing a hybrid model in which 
GPUs work in conjunction with CPUs. Technologies like 
NVIDIA Compute Unified Device Architecture (CUDA), 

Khronos Open Computing Language (OpenCL) and 
Microsoft C++ AMP are widely used in GPU computing. 
 

This paper describes the GPU implementation 
aspects of two of the most commonly used radar imaging 
algorithms namely Time Domain Backprojection and 
Kirchhoff Migration in detecting concealed targets. Both 
CUDA and OpenCL implementations are discussed here 
and the performances of these implementations are 
compared against CPU implementations. Synthetic, 
simulated and experimental data sets were used for this 
study. 

The next two sections briefly outline the Time 
domain Backprojection and Kirchhoff Migration 
algorithms. The CUDA and OpenCL implementation 
aspects are explained in Sections IV & V respectively. 
Both the implementations use NVIDIA CUDA SDK 4.2 
on an NVIDIA GeForce GT 610 GPU. The results and 
performance comparison details are described under 
section VI.  

II.   TIME DOMAIN BACKPROJECTION  

Backprojection is a matched filter implementation of 
time-domain correlation. The idea is to correlate data 
collected at each aperture position as a function of round-
trip delay time. Backprojection coherently sums the 
sampled radar returns for each pixel of the image map. 
Coherent summation is a process whereby the signal 
obtained at each aperture position is time-shifted to match 
or align, it to a particular pixel element in the image map. 

The time domain backprojection is performed 
through the following equation: 
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where (y, z) is the point/pixel to be focused, K is the 
number of measurement locations, b(yk, t) is the B-scan 
data [2] collected along a single line at discrete points  (yk, 
z’),  
k = 1, 2, ..., K, at time instant t, and t is the two-way travel 
time from Transmitting antenna at the kth  location to the 
point (y, z) and back to the kth Receiving antenna. If t does 
not match with any time sample, numerical interpolation 
may be employed to compute an approximate value of b 
at t. More details on the theory can e found in [9]-[12]. 
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III.   KIRCHHOFF MIGRATION  

The basic idea in the Kirchhoff Migration is to 
back-propagate the measured wave front to a plane at  
t = 0, using an integral solution method to the scalar wave 
equation. So this migration method involves back-
propagation or inverse extrapolation to remove the effects 
of wave field propagation ([2]-[8]). 

The imaging equation for Kirchhoff Migration is 
as follows: 
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where, r = (y, z) is the point to be migrated, r’ = (yk, z’) is 
the source (Transmitting Antenna) location, |r - r’| is the 
distance between r and r’, K is the number of 
measurement locations, vm is the velocity of the wave 
inside the medium of propagation, b(yk, t) is the B-scan 
data collected along a single line at discrete points  yk, 
k = 1, 2, ..., K, at time instant t, and cosθ = |z - z’| / |r - r’| 

IV.   CUDA IMPLEMENTATION 

The CUDA programming ([19]-[25]) supports 
the CUDA threads executed on a physically separate 
device (GPU) that operates as a coprocessor to the host 
(CPU) running the program. The program consists of a 
series of sequential and parallel execution phases. 
Sequential phases have little or no parallelism, which are 
executed on the CPU as host code. Parallel phases have 
rich data parallelism, which are implemented as a set of 
kernel function (piece of code to be executed on the GPU) 
on GPU. 

The fundamental means of parallel execution in 
CUDA is data-parallel threads. Launching a CUDA 
kernel function creates a grid of parallel threads, all of 
which execute the kernel function. Each CUDA grid 
typically is comprised of thousands to millions of 
lightweight GPU threads per kernel invocation. At the top 
level, each grid consists of one or more thread blocks. All 
blocks in a grid have the same number of threads. 

CUDA C implementation includes the following 
steps: 1. Allocation of host memory and loading the B-
scan data to host memory. 2. Allocation of device 
memory through the function cudaMalloc. 3. Copying 
data from host memory to device memory through 
cudaMemcpy. 4. Invocation of kernel function(s) to 
perform the computation. 5. Copying data from device 
memory to host memory through cudaMemcpy. 6. 
Deallocation of host and device memory spaces. 
 

V.   OPENCL IMPLEMENTATION 

OpenCL ([24]-[28]) makes use of a data 
parallelism model that has direct correspondence with the 
CUDA data parallelism model. When a kernel function is 
launched, its code is run by work items, which correspond 

to CUDA threads. An index space defines the work items 
and how data are mapped to the work items; that is, 
OpenCL work items are identified by global dimension 
index ranges (NDRanges). Work items form work groups, 
which correspond to CUDA thread blocks. The NDRange 
(CUDA grid) contains all work items. The following are 
the steps involved in the implementation. 

1.  Discover and initialize the platforms 
(clGetPlatformIDs) 
2. Discover and initialize the devices (clGetDeviceIDs) 
3. Create a context (clCreateContext) 
4. Create a command queue (clCreateCommandQueue) 
5. Create device buffers (clCreateBuffer) 
6. Write host data to device buffers 
(clEnqueueWriteBuffer) 
7. Create and compile the program 
(clCreateProgramWithSource) 
8. Create the kernels (clCreateKernel) 
9. Set the kernel arguments (clSetKernelArg) 
10. Configure the work-item structure 
11. Enqueue the kernel for execution 
(clEnqueueNDRangeKernel) 
12. Read the output buffer back to the host 
(clEnqueueReadBuffer) 
13. Release OpenCL resources (clReleaseXXX) 

VI.   RESULTS 

An NVIDIA GeForce GT 610 GPU (810 MHz, 2 
GB Graphics memory, 48 cores, 8 blocks, CUDA 2.1 
compute support) on an Intel Core 2 Duo (3.6 GHz, 4 GB 
RAM, Windows 7 OS) computer has been used in this 
study. CUDA-C and NVIDIA OpenCL versions were 
used in the CUDA and OpenCL implementations of the 
algorithms. The input data and final results of the analysis 
are stored in comma separated variables (csv) format and 
are plotted using MATLAB.  

Three types of data sets are used in this study: 
synthetic data, simulated data and experimental data. It 
should be noted that travel time corrections were not 
performed while computing the Time of Arrival (TOA 
[7]) so that the actual positions of the targets and their 
positions in the focused images won’t match. Moreover, 
no data pre-processing techniques were applied on these 
data sets. 

The synthetic B-scan data was generated by 
analytically computing the response of two point targets 
to a Gaussian input pulse (0.5 ns pulse width) in a 10 m × 
10 m domain [10]. The targets were placed at (4, 4) and 
(8, 3) and their reflections were recorded at 96 locations 
along the cross range for a duration of 100 ns at each 
location (1024 samples). The problem geometry and the 
focused images using Kirchhoff & Backprojection 
algorithms are shown in Figure 1. 

For generating simulated B-scan data, the public 
domain software GPRMax 2.0 (based on the Finite-
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Difference Time-Domain method for Electromagnetics) 
has been used [29]. For GPR data simulation, a problem 
domain of size 2.3 m × 0.2 m was considered. The 
problem geometry is shown in Figure 2. The targets are 
circular and 8 of them are Perfect Electric Conductors 
(the first four and the last four) and the rest are vacuum 
(shown in the middle) and are buried in wet sand. Return 
signals were recorded at 115 transmit/receive locations 
and 2036 range bins were considered in this case. A 
Kirchhoff migrated output is shown in Figure 2. 

Simulated B-scan data was generated using 
GPRMax for TWIR case as well, and a 0.3 m × 0.6 m 
domain was considered. A concrete wall separates the 
transmit/receive antenna and the circular PEC target. 
Vacuum is considered everywhere else in the problem 
domain. 1357 data samples were recorded at each of the 
41 transmit/receive locations. The problem geometry and 
corresponding focused image are shown in Figure 3. 

An experimental set-up was used for collecting 
data for Through Wall Radar Imaging. This set-up 
consists of an EATON Advanced Electronics’ Impulse 
Generator (60 kHz - 1GHz) and a Tektronix DPO 71604 
Digital Phosphor Oscilloscope with 16 GHz/50 GS/s. 

For this measurement a bi-static pair of horn 
antennas was used with antenna separation of 14 cm 
(centre to centre). To generate a 2-D scanning array of 
antennas the antenna platform was manually moved along 
the cross range (X) and height (Z) directions. A cross 
range resolution of 30 cm and a height resolution of 15 
cm were considered in this experiment. Initial height from 
ground is 110 cm, and measurements were taken at 125 
cm and 140 cm as well. A scan array size of 8 × 3 was 
considered for the C-scan measurement (8 points along 
cross range and 3 points along height directions). 
Distance of the Transmitter/ Receiver pair from wall is 
27.5 cm. 

A horn antenna, a conical antenna and a metallic 
cylinder were used as targets. A wooden wall of thickness 
8 cm was present between objects and the antenna. 
Another wooden sheet (with metallic frame), which is 
part of a cubicle, was present in between the targets and 
the first wall. In this configuration, a part of the metallic 
frame also falls in the imaging area (which makes the 
number of targets four). The data set has 1250 samples 
and a B-scan subset of this data set at a height of 125 cm 
was chosen for imaging. The focused image is shown in 
Figure 4.  

 

 

 

 

 

 

  

 

 

Figure 1. Synthetic Data - Problem Domain (top), Backprojected 
Image (middle) & Migrated Image (bottom) 

 

 

 

Figure 2. Simulated Data – GPR (Not Scaled)  Problem Domain 
(top) & Migrated Image (bottom) 

  

Figure 3. Simulated Data - TWIR Problem Domain (left) & 
Backprojected Image (right) 
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Figure 4. Experimental Data - Measurement Setup (top), Targets 
(middle) &  Backprojected Image (bottom)  

 Figure 5 shows the computation time of the two 
algorithms for C++ (for CPU), CUDA-C & OpenCL 
implementations and the performance acceleration 
achieved by the CUDA and OpenCL implementations on 
the GPU over a pure CPU execution (single core) using 
C++, in case of the synthetic data. The executions were 
performed 25 times and the average computation time in 
millisecond is plotted here. The data read/write time is not 
considered. As expected CUDA offered more acceleration 
than OpenCL in our study. This is mainly due to the fact 
that the NVIDIA version of OpenCL was used here and it 
will definitely underperform CUDA, which is optimized 
to run on NVIDIA GPUs. Probably an AMD/ATI 
OpenCL version can perform better on this device and 
may outperform on an ATI GPU. 

 

 

Figure 5. CPU Vs GPU for Synthetic Data (Image Size: 512 × 512 
Pixels)  - Computation Time (top)  & Performance Acceleration 
(bottom) 

VII.   CONCLUSIONS 

Considerable performance acceleration (in the 
order of 60 to 70 times) could be achieved by running the 
Backprojection and Kirchhoff Migration algorithms on a 
low-end GPU. CUDA and OpenCL technologies were 
used here. The fundamental difference between CUDA 
and OpenCL is that CUDA code can run only on NVIDIA 
GPUs, where as OpenCL code is heterogeneous. 

Image resolution beyond 1024 × 1024 pixels 
resolution could not be considered during this study. This 
is due to an inherent problem in Windows XP/Vista/7 
Operating System (OS). These higher resolution GPU 
computation takes more than 2 seconds to complete and 
Windows watchdog application (part of the OS) kills 
applications sharing the same resources and taking more 
than 2 s to complete. Here the display driver was also 
sharing the same GPU since Windows OS disables 
onboard graphics once the Graphics card is installed. A 
BIOS configuration may be possible to enable both 
onboard graphics and GPU at the same time, but it was 
not supported in our computer. Modifying the Windows 
registry to set the watchdog’s time out value higher is 
another option, but is not a recommended approach and is 
not a permanent solution. Using an non-Windows OS like 
Linux may help in resolving the issue. 
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The performance can further be improved by 
optimizing the code by selecting optimum registry and 
block sizes and other performance optimization strategies. 
Executing the code on advanced GPUs like NVIDIA 
Tesla C 2075 (512 cores) or Tesla K10, K20 & K20X 
which are having more than 2000 cores and higher clock 
speed & graphics memory will accelerate it further. Intel 
Xeon Phi Coprocessor is another promising hardware for 
accelerating the performance of these algorithms. These 
possibilities will be explored in future. 

The acceleration observed is mainly due to the 
fact that, in these algorithms, the image intensity is 
calculated on a pixel-by-pixel basis. Hence how far GPU 
can accelerate other radar imaging algorithms has to be 
seen. CPU implementations (C++) of some of these 
algorithms like Frequency Domain Backprojection, RDA, 
RMA and Extended CSA were done in this regard ([16]-
[18]). The GPU implementation is part of the future work 
in this dimension. 
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